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The state of the boundary layer on space re-entry vehicles significantly affects the design of the thermal pro-
tection system. However, the physical mechanism that leads to the laminar-turbulent boundary-layer transition
on blunt spherical capsules remains an open question in literature. This work numerically assesses the poten-
tial of roughness-induced non-modal disturbance growth on re-entry capsules with a spherical-section fore-
body by optimal transient-growth theory and direct numerical simulation. Two different sets of wind-tunnel
experiments are considered. Optimal transient-growth studies have been performed for the blunt capsule ex-
periments at Mach 5.9 in the Hypersonic Ludwieg tube Braunschweig (HLB) of the Technische Universität
Braunschweig. In some of these measurements, the capsule model was equipped with a specifically designed
patch of distributed micron-sized surface roughness. The transient-growth results for the HLB capsule are
compared to corresponding numerical data for a Mach 6 blunt capsule experiment in the Adjustable Contour
Expansion (ACE) facility of the Texas A&M University (TAMU) at lower Reynolds number. Similar trends
are observed for both configurations. In particular, a rather low maximum energy gain is noted for the surface
temperature conditions of the experiments. It is shown that the surface temperature dependence of the optimal
transient-growth results is very similar for both capsule configurations. Moreover, the generation of station-
ary disturbances by well-defined roughness patches on the capsule surface is studied for the conditions of the
HLB experiment using direct numerical simulations (DNS). To help explain the observed laminar-turbulent
transition downstream of the roughness patch in some of the HLB capsule experiments, additional simulations
were carried out to study the evolution of unsteady perturbations within the steady disturbance flow field due
to the roughness patch. However, the DNS did not provide any indication of modal or non-modal disturbance
growth in the wake of the roughness patch, and hence, the physical mechanism underlying the observed onset
of transition remains unknown.
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Nomenclature

c damping function
cT power-law exponent
d Cartesian cell length
fi disturbance frequency for unsteady computations
g(ξ ,ζ ,η , t) generic flow variable
k peak-to-valley roughness height
ht total enthalpy
hξ , hζ streamwise and azimuthal metric factors, respectively
mζ non-dimensional azimuthal wavenumber
m, n time and space indices in the spatio-temporal analysis, respectively
p pressure
q basic flow vector
q̃ unsteady perturbation vector
q̂ vector of amplitude functions
rb local radius
s, ŝ streamwise coordinate with reference to the stagnation point
t time
(u,v,w) velocity components along streamwise, azimuthal, and wall-normal directions
Am,n(ξ ) amplitude of the spatio-temporal mode
D face diameter
E energy norm based on total energy
G energy gain
Gm,n(ξ ,η) azimuthal wavenumber-frequency spectra
J objective function
K energy norm based on kinetic energy
L twice the edge length of a roughness element
Ma Mach number
M, N number of time and space samples, respectively
NE , NK N-factor, i.e. integrated logarithmic amplification factor, based on E and K, respectively
R face radius
Ra surface mean roughness
Rs spherical-segment radius
Rek Reynolds number based on roughness height and flow conditions at the boundary-layer edge
Rekk Reynolds number based on roughness height and flow conditions at this height
ReR Reynolds number based on capsule-face radius
Re/l unit Reynolds number
Reθ Reynolds number based on boundary-layer momentum thickness
T temperature
Ûm(ξ ,ζ ,η) time Fourier transform of the streamwise velocity
β dimensional azimuthal wavenumber
γ ratio of specific heats
δ boundary-layer thickness
δ ∗ boundary-layer displacement thickness
(ξ ,ζ ,η) streamwise, azimuthal, and wall-normal coordinates
θ boundary-layer momentum thickness
κξ streamwise curvature
λ azimuthal wavelength
ρ density
φ angular coordinate
χ inclination of the local tangent to the body surface
A, B, C, D, L PSE matrix operators
M energy weight matrix
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Subscripts
()0 inlet disturbance location
()1 outlet disturbance location
()e value at the boundary-layer edge
()k value at the roughness height
()L left adjacent cell
()R right adjacent cell
()w value at the wall
()opt optimal value
()tr transition location
()∞ freestream value

Superscripts
()mean mean energy gain
()out outlet energy gain
()† adjoint
()H conjugate transpose

Abbreviations
ACE Adjustable Contour Expansion facility
AoA angle of attack (angle of incidence)
AUSM advection upstream splitting method
CEV Crew Exploration Vehicle
DLR German Aerospace Center
DNS direct numerical simulation
FD-q stable high-order finite differences of order q
FFT fast Fourier transform
HLB Hypersonic Ludwieg tube Braunschweig
IR infrared
MPI Message Passing Interface
NASA National Aeronautics and Space Administration
NSMB Navier Stokes Multi Block solver
PSE parabolized stability equations
TAMU Texas A&M University

I. Introduction

Vehicles flying at hypersonic Mach numbers are exposed to a significant amount of heat load, and thus, often
require a thermal protection system (TPS). As the heat transfer rates of a turbulent boundary layer are much higher
compared to the laminar state, the location of laminar-turbulent transition is a crucial design parameter for the TPS.
The mechanisms of laminar-turbulent transition on the windward side of blunt bodies like re-entry capsules are not
well understood so far. However, experiments have shown that surface roughness plays an important role during the
transition process.1, 2 Based on systematic studies of the roughness effects on blunt-body transition, different empirical
correlations have been proposed in the literature.3, 4

Blunt re-entry capsules with a sphere-cone shaped forebody like the Mars Science Laboratory (MSL) support
modal growth of boundary-layer instabilities on the conical part of the heat shield strong enough to trigger laminar-
turbulent transition.5–7 Configurations where the forebody consists of a spherical segment only, like the Apollo capsule
or the Orion Crew Exploration Vehicle (CEV), require a much higher Reynolds number for the onset of modal distur-
bance growth.8 Owing to the strong bow shock, the boundary-layer edge Mach number remains subsonic or slightly
supersonic on the spherical heat shield, which excludes the possibility of second mode amplification. Due to the
spherical body shape, there is a sustained, strongly favorable pressure gradient which has a highly stabilizing effect
on the first mode instabilities. Moreover, although the flow is strongly accelerated, the crossflow velocity compo-
nent inside the boundary layer remains small because of the weak curvature of the boundary-layer edge streamlines.
Therefore, crossflow-mode amplification is not relevant either, and the Görtler-type instability is precluded due to
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the convex surface curvature. Nevertheless, laminar-turbulent transition is observed on such configurations, even at
Reynolds numbers for which, according to the linear stability theory, no modal disturbance growth can be found. This
phenomenon is denoted as “blunt-body paradox” in the literature.9

In situations where the flow does not support modal disturbance amplification, transient growth is still a possible
scenario for significant disturbance growth.10 Basically, a linear superposition of modal disturbances may exhibit
transient growth in amplitude despite the fact that each individual mode is decaying in downstream direction. The
transient amplification becomes possible only because the individual modes are non-orthogonal to each other, which
is a consequence of the non-normality of the underlying governing equations. The overall non-modal growth strongly
depends on the initial shape of the disturbance. Therefore, typically an optimization procedure is used to identify the
optimal initial condition that leads to the maximum transient growth, excluding the question of a physical realizability
of the initial disturbance. Hence, such optimal transient-growth studies provide an upper limit on the non-modal
disturbance growth.

Transient disturbance growth has been proposed in literature as a possible cause for laminar-turbulent transition, in
particular in those cases where modal disturbance amplification is too weak. Reshotko & Tumin11 considered nosetip
transition and used optimal transient-growth results to derive a correlation for roughness-induced transition in the near
vicinity of the stagnation point of blunt geometries. Their correlation uses the same parameters as these purely empir-
ical correlations,3, 4 which relate the momentum thickness Reynolds number at the transition-onset location with the
surface-roughness height and the ratio of surface to boundary-layer edge temperatures. However, the exponents de-
scribing the roughness and surface temperature effects are derived from physical considerations together with optimal
transient-growth theory. The correlation of Reshotko & Tumin will be denoted as “RT-correlation” from here on. The
RT-correlation was able to reproduce the trends of the various data sets used to derive the empirical correlations. How-
ever, the optimal transient-growth approach of Reshotko & Tumin included some simplifying assumptions. Therefore,
Paredes et al.12 used an improved framework of optimal transient-growth analysis which removed the shortcomings of
the approach of Reshotko & Tumin and applied it to the scale model of the Orion CEV geometry studied in the Mach
6 ACE wind tunnel at Texas A&M University (TAMU).13, 14 In these experiments, the effect of uniformly distributed
surface roughness on transition onset was systematically studied. For the comparatively small Reynolds numbers
considered in this experiment, the necessary roughness height to trigger transition in the stagnation flow region was
in the order of 0.7 to 1.5 boundary-layer thicknesses.14 Despite the significant effects of the non-similar boundary
layer on the transient-growth characteristics, Paredes et al. found that the transient-growth scaling with respect to
Reynolds number and the ratio of surface to edge temperature did not change significantly after the improved frame-
work was applied. Since the RT correlation depends only on those two scalings, the modified correlation remained
close to the original correlation of Reshotko & Tumin despite the improvements in the calculation of optimal growth
factors. Paredes et al.12 also pointed out that the magnitude of transient growth up to the measured transition locations
at the experiments at TAMU was rather small, which raises questions regarding the relevance of the optimal growth
paradigm.

Additional experimental studies8, 15, 16 on laminar-turbulent transition in the boundary layer of a blunt Apollo-like
capsule were performed at Mach 5.9 in the Hypersonic Ludwieg tube at the Technische Universität Braunschweig
(HLB) in the unit Reynolds number range of Re/l ≈ 6× 106 /m to Re/l ≈ 20× 106 /m. Infrared (IR) thermography
was used to monitor laminar and transitional surface heating. IR measurements based on a standard IR coating with a
mean roughness of Ra ≈ 10µm revealed the appearance of transitional surface heating at Re/l ≈ 15× 106 /m. For a
highly polished surface with Ra≈ 0.5µm, no indication of transition was found within the unit Reynolds number range
of the HLB. As expected, linear stability analyses for the nominally smooth surface showed that the laminar boundary
layer is highly stable. Much larger unit Reynolds numbers would be required for the onset of modal boundary-layer
instability growth.8 Numerical studies on modal disturbance growth in the wake of discrete roughness elements at unit
Reynolds number conditions of the experiment showed that roughness element heights well above the mean roughness
of the IR coating are required for the onset of a noteworthy modal disturbance growth in the wake flow.17, 18 For further
studies of the distributed surface-roughness effects, a specifically designed micron-sized surface-roughness patch of
20mm×20mm was fabricated and placed at the center of the capsule forebody.16 The patch consists of uniformly
spaced rectangular micron-sized roughness elements. It features a similar Ra value as the surface with the standard IR
coating but has a roughness structure that is well defined, reproducible, and also amenable to numerical studies. The
roughness patch triggered laminar-turbulent transition in recent experiments in the HLB at unit Reynolds numbers
that are similar to those required in the case of the IR coating. Similar to the experimental results for the standard
IR coating, the onset of transition depends on the position of the capsule model in the wind-tunnel test section.16 If
the capsule model with increased roughness height (i.e. either with standard IR coating or with the roughness patch
applied) is positioned such that its stagnation point region is located closer to the centerline of the test section, transition
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is observed for Re/l ' 15×106 /m. In the transitional region, several broadband peaks appear in the hot-wire spectra
above 100kHz. If the stagnation flow region is moved further away from the wind-tunnel centerline, then no transition
is observed. Due to peculiar design characteristics of the HLB, the free-stream disturbance level near the center is
moderately higher than that outside the centerline zone.

One of the main objectives of the present paper is to assess the potential for non-modal disturbance growth on the
forebody of the HLB capsule by using optimal transient-growth theory. Specifically, the effects of surface tempera-
ture and unit Reynolds number on the optimal transient growth are investigated and compared with the results for the
TAMU capsule as a similar Mach number but lower Reynolds numbers.12 Furthermore, the steady disturbance flow
field introduced by the roughness patch on the HLB capsule and its interaction with additional unsteady disturbances
is studied by direct numerical simulations (DNS) in order to investigate possible modal or non-modal disturbance
growth mechanisms either in the vicinity of the roughness patch or in the wake region behind the patch. The dif-
ferent numerical approaches used are briefly introduced in Sec. II and the blunt body configurations considered are
described in Sec. III. The optimal transient-growth results for the HLB capsule are presented in Sec. IV and compared
to corresponding data for the TAMU capsule. The additional data set for the HLB capsule is used to further substan-
tiate the value of the power-law exponent of the wall to boundary-layer edge temperature ratio of the correlation for
roughness-induced transition that was originally proposed by Reshotko & Tumin11 and the slightly different value re-
cently derived by Paredes et al.12 based on optimal transient-growth data for the TAMU capsule. In Sec. V, the results
of direct numerical simulations are presented which try to replicate the conditions of the HLB capsule experiment with
the specifically tailored roughness patch. The experimental results for the HLB and TAMU capsules among others are
discussed in further detail in a companion paper by Radespiel et al.16

II. Methodologies

This section introduces the different methodologies used in this paper. First, a brief overview of the linear optimal
transient-growth theory based on parabolized stability equations is given, where an initial disturbance is sought which
maximizes an objective function. The following subsection highlights the methods used for the direct numerical
simulation.

A. Optimal transient-growth theory

The optimal transient-growth analysis is performed using the framework of linear parabolized stability equations (PSE)
as elucidated in the literature.19–22 The method is outlined here for the sake of completeness.

1. Governing equations

In the PSE concept, the stationary three-dimensional disturbance q̃ can be written as

q̃(ξ ,ζ ,η) = q̂(ξ ,η)exp(iβζ )+ c.c., (1)

where c.c. denotes the complex conjugate and q̂(ξ ,η) =
[
ρ̂, û, v̂, ŵ, T̂

]T represents the vector of amplitude func-
tions, containing the density and temperature fluctuations (ρ̂, T̂ ), as well as the velocity disturbances (û, v̂, ŵ) in the
streamwise (ξ ), azimuthal (ζ ) and wall-normal direction (η), respectively. The wavenumber along the azimuthal (ζ )
direction is β and the disturbance azimuthal wavelength is defined as λ (ξ ) = 2π/β .

Introducing the perturbation form from Eq. 1 into the linearized Navier-Stokes equations and assuming a slow
streamwise variation of the basic state and of the amplitude functions to neglect the viscous derivatives in the stream-
wise direction, the non-local linear stability equations are obtained and can be written in the form

Lq̂(ξ ,η) =

(
A+B

∂

∂η
+C

∂ 2

∂η2 +D
∂

∂ξ

)
q̂(ξ ,η) = 0. (2)

The linear operators A, B, C, and D are provided in Ref. 23 along with a more detailed explanation on the derivation
of the PSE. The parabolized stability equations (Eq. 2) are integrated in the downstream ξ -direction using a marching
procedure. Even though the system has been ‘parabolized‘, some ellipticity remains and information is allowed to
propagate upstream, which in turn can cause numerical instabilities if the step size in ξ becomes too small. Chang et
al.24 identified the ∂ p̂/∂ξ -term as the most relevant source of remaining ellipticity, however, this term is of higher
order for transient-growth problems25, 26 and, therefore, will be omitted for the present work.
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2. Optimality system

In the optimal transient-growth framework a set of perturbation profiles at an initial location, q̃0 = q̃ξ0 , are sought
that maximize a suitably defined objective function, J (q̃), which is a measure of disturbance energy gain within
the optimization interval [ξ0,ξ1]. There are two definitions of the energy gain that are commonly used for optimal-
perturbation problems;19, 22, 27 namely the outlet energy gain,

Gout =
E (ξ1)

E (ξ0)
, (3)

and the mean energy gain,

Gmean =
1

ξ1−ξ0

∫ ξ1
ξ0

E (ξ ′)dξ ′

E (ξ0)
, (4)

where E denotes the energy norm of q̃. In this work, we use the positive-definite energy norm, proposed by Chu,28

Mack29 and Hanifi et al.,30 defined as

E (ξ ) =
1
λ

∫
ζ

∫
η

q̃(ξ ,ζ ,η)H MEq̃(ξ ,ζ ,η)hξ hζ dηdζ , (5)

where the superscript H denotes conjugate transpose and hξ , hζ are metric factors associated with the streamwise and
azimuthal curvature, respectively. The total energy weight matrix, ME, includes all five state variables and is defined
by

ME = diag
[

T̄ (ξ ,η)

ρ̄ (ξ ,η)Ma2 , ρ̄ (ξ ,η) , ρ̄ (ξ ,η) , ρ̄ (ξ ,η) ,
ρ̄ (ξ ,η)

γ (γ−1) T̄ (ξ ,η)Ma2

]
. (6)

An overbar denotes meanflow quantities, γ is the ratio of specific heats and Ma is the Mach number. Additionally,
an energy norm which is solely based on the kinetic energy of the disturbance is also used in this paper. The energy
weight matrix, in this case, reduces to

MK = diag [0, ρ̄ (ξ ,η) , ρ̄ (ξ ,η) , ρ̄ (ξ ,η) ,0] . (7)

To distinguish when the objective function is maximized for the total energy E or the kinetic energy K of a disturbance,
a corresponding subscript is added to the energy gain, resulting in four different possible options: Gout

E , Gout
K , Gmean

E ,
and Gmean

K .
An adjoint-based optimization algorithm is applied to determine the maximum of the objective functional J, em-

ploying the intrinsic parabolic nature of the equations. Starting from an initial guess at ξ0 the direct PSE, Lq̃ = 0,
are used to march the solution q̃ from ξ = ξ0 to ξ = ξ1, where the final optimality condition is used to obtain the
initial condition for the backward integration of the adjoint PSE, L†q̃† = RHS, where RHS = 0 in case of outlet en-
ergy gain optimization (Gout ) and RHS = 2MH q̃ for the mean energy optimization (Gmean). A new initial condition
for the forward problem is obtained from the adjoint solution at ξ0 employing the initial optimality condition. The
optimization procedure is terminated when the value of J has converged up to a prescribed tolerance, which was set to
10−4 in the present computations. In this work, we have used the continuous, as well as the discrete adjoint approach
for integrating q̃† from ξ1 to ξ0, revealing no impact of the adjoint method on the optimal disturbance growth. All
results shown in this paper have been computed by applying the continuous adjoint approach.

3. Spatial discretization and boundary conditions

The PSE are discretized with a stable high-order finite differences scheme (FD-q)31 of sixth order along the wall-
normal direction. The perturbations are integrated along the streamwise coordinate by using second-order backward
differentiation and a constant step size. The number of discretization points was varied in both spatial directions to
ensure grid convergence of the optimal transient-growth results, whereas clustering of grid points towards the wall was
performed. No-slip, isothermal boundary conditions are imposed at the wall, i.e., û = v̂ = ŵ = T̂ = 0. At the upper
boundary, which is located just below the shock layer, homogeneous Dirichlet conditions, ρ̂ = û = v̂ = T̂ = 0, and a
Neumann boundary condition for the wall-normal velocity component, ŵη = 0, are prescribed.
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4. Cross-comparison of the optimal transient-growth codes

The non-modal disturbance growth results presented in this paper have been computed with two different codes. The
optimal-growth framework developed by NASA is used for the computations for the TAMU ACE capsule configuration
and has been extensively verified.21 On the other hand, a newly developed optimal transient-growth code by DLR is
employed for characterizing the non-modal growth properties of the boundary layer on the HLB capsule. A more
detailed overview of the two different capsule configuration is given in Sec. III.

The boundary-layer flow over a hemisphere at Ma = 7.32 is considered to cross-verify the two different transient-
growth implementations used in this work. Details on the basic flow computations were reported by Li et al.32 and
the non-modal disturbance growth characteristics of the boundary layer in downstream direction are given in Ref. 22.
Figure 1 depicts the streamwise evolution of basic flow variables at the edge of the boundary layer along the angular
coordinate φ (φ = ξ/Rs with Rs being the radius of the hemisphere). The boundary-layer edge is defined as the wall-
normal position where the total enthalpy reaches 99.5% of the freestream value (ht/ht,∞ = 0.995). The basic state
computed by DLR utilizes the numerical framework described in Theiss et al.8 Figure 2 shows the optimal outlet
energy gain based on the total energy of the disturbance, Gout

E , at a fixed output location and varying inflow positions
as a function of the azimuthal wavenumber, mζ , for the basic state computed by DLR. An excellent agreement of the
predicted gain from both codes is observed.
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Figure 1. Streamwise evolution of basic flow variables at the edge
of the boundary layer for the hemisphere computed by DLR (lines)
and NASA (symbols).
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Figure 2. Optimal outlet energy gain Gout
E as a function of the az-

imuthal wavenumber mζ for φ1 = 32.2◦ and varying φ0 computed
by DLR (lines) and NASA (symbols).

B. Direct numerical simulations

The numerical method used by RWTH solves the compressible Navier-Stokes equations in space and time.33 The
computational domain is discretized by an unstructured hierarchical Cartesian mesh whose cells are arranged in an
octree structure. The domain decomposition for parallel computations is based on the Hilbert space-filling curve
and subtree workloads to distribute subtrees of the hierarchical octree of equal loads to processors.34 The governing
equations are integrated using a finite-volume method.35 The boundaries of the computational domain are embedded
in the Cartesian mesh and modeled employing cut cells.33 Small cut cells are treated using an interpolation and
flux-redistribution scheme.35

For the spatial discretization, an advection upstream splitting method (AUSM) is used. The advection Mach num-
ber on the cell surface is the mean of the extrapolated Mach numbers from the adjacent cells Ma1/2 = 0.5(MaL +MaR).
The same formulation holds for the pressure on the cell surface. The cell center gradients are computed using a second-
order accurate least-squares reconstruction scheme.33 Shock capturing is achieved by adding additional numerical
dissipation at the shock position. The temporal integration is based on a 5-stage second-order accurate Runge-Kutta
scheme. For supersonic flows, the code has been employed and validated for the flow past a cone and around a blunt
stagnation point probe.36, 37

The DNS by the Technical University of Munich (TUM) are performed using the Navier Stokes Multi Block solver
(NSMB). NSMB is an MPI-parallelized, finite-volume code for structured grids with a wide variety of numerical
schemes and it has been extensively tested in studies of hypersonic flows.38, 39 The spatial discretization is based on a
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4th-order, central difference scheme, whereas a 4th-order Runge-Kutta method is used for time integration. Artificial
numerical dissipation is added to capture the shock and to suppress spurious oscillations.

III. Configurations

A. TAMU capsule

The first configuration for which transient-growth results are presented corresponds to a blunt, spherical-section fore-
body at 28◦ angle of incidence with respect to the free stream. The forebody configuration models the Orion CEV
capsule geometry.40 The face diameter is D = 2R = 0.0762m and the remaining dimensions are scaled according to
Hollis,40 resulting in a sphere radius of Rs = 0.09144m. The flow conditions at Mach 6 match those of a wind-tunnel
experiment in the Adjustable Contour Expansion (ACE) facility at the National Aerothermochemistry Laboratory
(NAL) of Texas A&M University.13, 14 Paredes et al.12 performed transient growth calculations for four freestream
unit Reynolds numbers, namely, Re/l = 3.4×106 /m, 4.4× 106 /m, 5.4× 106 /m, and 6.4× 106 /m. The freestream
temperature was set to T̄∞ = 54.69 K and the surface temperature was equal to T̄w = 391.0 K. To investigate the effects
of surface temperature on the transient-growth characteristics, computations were also performed for additional, cooler
surface temperatures corresponding to T̄w = 300.0 K, 195.5 K, and 130.33 K, respectively, with the unit Reynolds num-
ber held fixed at Re/l = 4.4×106 /m.

The basic state, laminar boundary-layer flow over the forebody was computed by using a second-order accurate
algorithm as implemented in the finite-volume compressible Navier-Stokes flow solver VULCAN-CFD (see Ref. 41
and http://vulcan-cfd.larc.nasa.gov for further information about the solver). Further details about the laminar basic
flow computations are given in Ref. 12.

B. HLB capsule

The second capsule studied in this work corresponds to an Apollo-shaped capsule with a spherical-section forebody
(D = 0.17m and Rs = 0.204m) at an angle of attack of AoA = 24 ◦. Laminar basic flow computations are performed for
Mach 5.9 freestream conditions that match the experiments of Ali et al.15 in the Hypersonic Ludwieg Tube at the TU
Braunschweig (HLB). Overall, four different unit Reynolds numbers have been computed, namely Re/l = 10×106 /m,
12.5×106 /m, 16×106 /m, and 18×106 /m with the freestream temperature set to T̄∞ = 59.03 K and prescribed surface
temperature of T̄w = 295 K. To also assess the impact of surface temperature on the non-modal disturbance growth
characteristics, additional simulations have been performed at fixed freestream conditions for Re/l = 10×106 /m and
modified surface temperatures with T̄w = 170 K, 245 K and 395 K, respectively.

The laminar basic flow was computed with the second-order accurate, three-dimensional, finite-volume, compress-
ible Navier-Stokes flow solver FLOWer42 on a block-structured grid. More details about the numerical settings and
the employed grid are given in Ref. 8.

C. Comparison of boundary-layer edge data for the two capsules

Figure 3 shows a three-dimensional view of the HLB capsule forebody with the Mach number isocontours in the
symmetry plane and the Reynolds number based on momentum thickness, Reθ , on the capsule forebody. Only one
half of the model was used in the basic flow computations, exploiting the azimuthal symmetry of the flow field. Due
to the strong bow shock, the boundary-layer edge Mach number falls within the subsonic to transonic range and the
flow continuously accelerates from the stagnation point at ξ = 0 towards the capsule shoulder. In this work, we focus
on the leeward symmetry region above the stagnation point, where transition has been observed in experiments.8, 14

The HLB capsule has been investigated at higher unit Reynolds numbers and its diameter is about twice the size
of the Orion CEV model. The angle of attack differs also, but due to the spherical forebody, the boundary-layer
edge values normalized with the respective freestream values are very similar for the two flow configurations as
depicted in Fig. 4. In accordance with Sec. II.A.4, the boundary-layer edge is determined from the total enthalpy
criterion (ht/ht,∞ = 0.995). For both capsule geometries, the mass flux, ρ̄eūe, increases with growing distance from
the stagnation point and reaches its maximum at the sonic point, Mae = 1, in agreement with the inviscid flow theory.

D. Hemisphere approximation

To ease the computational effort in the case of unsteady DNS, a reduction of the domain size is performed in the
simulations of TUM as shown in Fig. 5. First, the flow over a hemisphere is considered and it is shown that, with
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Figure 3. Three-dimensional view of the HLB capsule forebody
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metry plane and contours of Reynolds number based on momentum
thickness with boundary-layer edge streamlines on the forebody for
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the sonic lines.
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Figure 4. Streamwise evolution of boundary-layer edge quantities
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and T̄w = 395 K, �: TAMU capsule at Re/l = 4.4×106 /m and
T̄w = 391 K.

Figure 5. Representation of the simulation domains with the specified boundary conditions (left) and computational grid with close-up on
the roughness position (right). Simulations for the smooth configuration are conducted on the entire hemisphere (full domain), whereas
simulations for roughness investigations are conducted on a restricted domain. The box in the left figure shows the position of the restricted
domain. The roughness position is indicated by the red square in the right figure.

minor restrictions outside of the area of interest, this flow well represents the flow over the HLB capsule with angle
of attack. Second, results for the laminar steady flow on the whole hemispheric forebody (full domain) are used to
generate inflow profiles for a restricted computational domain. The grid resolution of the restricted domain can be
increased to match the resolution requirements imposed by the presence of the rough wall.

The steady base flow for the entire hemisphere with smooth surface is computed on an axisymmetric two-dimen-
sional grid. The grid consists of about 76000 points clustered around the shock location and inside the boundary layer.
To provide similar outflow boundaries as in the case of the re-entry capsule, the hemisphere ends with a shoulder
resembling the one of the HLB capsule.
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Figure 6. Comparison of boundary-layer velocity (left) and temperature (right) profiles for the smooth hemisphere and the HLB capsule
geometry with AoA = 24◦. The origin of the streamwise coordinate s is set on the stagnation point of the respective configuration.

For both the 3D capsule and the axisymmetric 2D hemisphere, boundary-layer streamwise velocity and tempera-
ture profiles at different positions are shown in Fig 6. The profiles on the 3D capsule geometry are extracted along the
symmetry plane. A clear match of the profiles is observed for the two configurations. In particular, the equivalence of
the two flows is obtained by comparing velocity and temperature profiles on the capsule at a given position s with the
ones on the hemisphere at ŝ = s+∆s, with s and ŝ being the streamwise coordinates on the two geometries with origin
on the respective stagnation points. On the capsule, the distance between the stagnation point and the rotation axis
is s = 60.5 mm. In the vicinity of this position, the flow corresponds to the one on the hemisphere at ŝ = 77.4 mm.
Details on the restricted domains and further comparisons between the capsule and the hemisphere boundary layer in
presence of roughness are discussed in Sec. V.B.1.

IV. Results on optimal transient growth

Optimal transient-growth results are presented for the HLB capsule with an emphasis on the effects of unit
Reynolds number and wall temperature on the non-modal growth characteristics and optimal optimization parame-
ters, namely, spanwise wavelength and optimization interval length. For each parametric study, the transient-growth
characteristics will be compared to the findings for the TAMU capsule presented in Ref. 12. Subsequently, the im-
plications of optimal growth results on the transition correlation of Reshotko & Tumin11 and Paredes et al.12 are
investigated.

In this work, we assume that the spanwise disturbance wavelength, λ (ξ ), increases in proportion to the distance
from the stagnation point. This ensures a constant wavenumber in the azimuthal direction, mζ , at each streamwise
position, as it was also used in the axisymmetric case for the hemisphere in Sec. II.A.4. Note that the dimensional
spanwise wavenumber β of Eq. 1 turns into the nondimensional, azimuthal wavenumber mζ . However, this assump-
tion may not hold for the fully three-dimensional flows investigated in this work. In general, a physically accurate
specification of azimuthal-wavenumber variation along a prescribed trajectory in a fully three-dimensional flow re-
mains an open question in the literature for both, modal and non-modal disturbance growth. For the TAMU capsule,
Paredes et al.12 have examined the effect of different strategies for specifying the streamwise variation in spanwise
disturbance wavelength on the transient-growth characteristics for the boundary layer along the leeward line of sym-
metry. In their study, the authors tested a constant wavelength approach, a variation based on streamline divergence,
and the assumption of axisymmetric flow. Their calculations revealed only a minor impact of the chosen wavelength
variation on the optimal transient growth across the optimization interval that led to the highest gain. The assumption
of axisymmetric flow for the azimuthal-wavelength variation resulted in the strongest growth of disturbance energy,
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and hence, can be considered as the strategy that provides the upper bound for non-modal disturbance growth on the
geometries regarded in this work. Under the assumption of axisymmetric flow, the metric factors yield in

hξ = 1+κξ η , (8)

hζ = rb +η cos(χ) , (9)

where κξ denotes the streamwise curvature (κξ = 1/Rs), rb is the local radius (rb = Rs sin(φ)), and χ specifies the
inclination of the local tangent to the body surface (sin(χ) = drb/dξ ).

A. Effects of unit Reynolds number and energy norm

Paredes et al.12 pointed out that, in order to apply the optimal transient-growth predictions toward transition cor-
relations for nonsimilar boundary-layer flows such as the HLB and TAMU capsules, both the initial and final lo-
cations of the transient-growth interval must be varied in addition to the azimuthal wavenumber of the disturbance.
First, we address the impact of energy norm (total energy vs kinetic energy only) on the gain based on outlet energy
(Eq. 3) at Re/l = 10×106 /m and T̄w = 295 K. The maximum gain within all possible optimization intervals [φ0,φ1]
(max[φ0,φ1] G) at the corresponding optimal azimuthal wavenumber, mζ ,opt , is plotted for the total energy norm in
Fig. 7a and for the kinetic energy norm in Fig. 7b, respectively. The region included in the figure is limited by the
line of zero length optimization interval φ1 = φ0 with Gout = 1 on the diagonal, and a line on the left that delimits the
region of the [φ0,φ1] space that is omitted because the initial disturbance profiles at φ0 peak above the boundary-layer
edge and do not exhibit sufficient decay in wall-normal direction (especially the wall-normal velocity component),
which in turn prevents the adjoint-based optimization algorithm to converge towards a satisfactory result. However,
the excluded portion of the plot is not considered to be important for the present analysis because perturbations with
an extended wall-normal support are unlikely to be excited by surface roughness. The maximum disturbance energy
gain in the case of Gout

E occurs close to the stagnation point (indicated by the black dot), which is in line with the ob-
servations for a hemisphere in hypersonic flow22, 27 and the TAMU capsule with T̄w/T̄e < 1.12 When the norm for the
optimization is based on the kinetic energy alone (Gout

K ), the location of the maximum gain shifts further downstream
towards the vicinity of the sonic point as depicted in Fig. 7b (φMe=1 ≈ 35 ◦, see also Fig. 4), which again is in close
agreement with previous observations for blunt body configurations.12, 22
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Figure 7. Isocontours of maximum gain in interval [φ0,φ1], max[φ0 ,φ1 ]
G, and optimal mζ for an optimization of (a) total energy gain Gout

E
and (b) kinetic energy gain Gout

K . The black dot indicates the location of the optimal interval where the highest gain occurs, [φ0,φ1]opt. The
black line denotes the value of φ1 corresponding to maximum Gout

E and Gout
K for a given φ0.

From here on, the overall non-modal growth characteristics of the flow are presented in terms of optimal combina-
tion of azimuthal wavenumber, mζ ,opt , and optimal optimization interval length, [φ0,φ1]opt , that lead to the maximum
value of the energy gain for a specific initial location. In the following, the impact of unit Reynolds number on the
optimal transient-growth characteristics is discussed with respect to objective functions based on outlet energy and
mean energy, respectively. The former objective function maximizes the disturbance energy at a prescribed outlet
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location φ1 (see Eq. 3), whereas J = Gmean maximizes the integral energy in the interval [φ0,φ1] (see Eq. 4), which can
lead to a higher possible overshoot in the disturbance energy evolution in comparison to J = Gout .

Figure 8 depicts the evolution of the maximum disturbance energy gain along the angular coordinate for the four
possible optimization options (Gout

E , Gmean
E , Gout

K and Gmean
K ) at different unit Reynolds numbers and T̄w = 295 K. Note

that the region below φ0 < 6 ◦ for GE and φ0 < 11 ◦ for GK is omitted, respectively. In those areas, the length of
the optimization interval is limited by the boundaries of the parameter space depicted in Fig. 7. In the case of mean
energy gain as the objective function for optimization, the length of the optimal optimization interval is much longer
than when the objective function corresponds to the outlet energy gain. Therefore, a meaningful comparison of both
objective functions with regard to the highest possible disturbance energy gain is not feasible below the mentioned
regions. For all cases shown in Fig. 8, maximizing the outlet energy, Gout , leads to the highest possible disturbance
energy gain within [φ0,φ1]opt at mζ ,opt . On that account, all of the results presented below to define the upper bound
of optimal transient growth for the HLB capsule will pertain only to the objective function based on outlet energy
gain (J = Gout ). For all unit Reynolds numbers considered here, the total energy gain of the perturbations reduces
with increasing distance from the stagnation point, whereas the kinetic energy gain grows towards the shoulder of
the capsule, which in turn implies an increasing share of the overall energy. The sudden decay in energy gain at
φ0 ≈ 37 ◦ for both energy norms, GE and GK , is attributed to the shortened optimization interval length at the end of
the simulation domain (see Fig. 7).
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Figure 8. Streamwise evolution of the maximum optimal disturbance energy gain based on outlet energy (solid lines) and mean energy
(dashed lines) at various unit Reynolds numbers and T̄w = 295K. The disturbance energy norm is based on (a) total energy and (b) kinetic
energy

From the optimal transient-growth analysis for boundary-layer flows over flat plates, the disturbance energy gain
at high Reynolds numbers is known to scale with the body-length Reynolds number ReL.27, 43 Figure 9 indicates the
nearly linear scaling of the optimal disturbance energy gain (Gout

E ) with the unit Reynolds number (ReR = R ·Re/l).
Because the dimension of the body is kept constant when the unit Reynolds number is varied, the observed small
deviations from the linear trend are attributed to the differences in the ratio of boundary-layer thickness to the radius
of surface curvature. The linear-like unit Reynolds number dependency of the optimal disturbance energy gain is also
reported for the TAMU capsule.12

The transient-growth amplification with regard to the logarithmic amplification ratio, i.e. N-factor, is shown in
Fig. 10 in terms of N-factor envelope curves and max[φ0,φ1]opt (N). The N-factor based on the total energy norm NE and
kinetic energy norm NK is defined as

NE (ξ ) = 1/2ln [E (ξ )/E (ξ0)] , NK(ξ ) = 1/2ln [K (ξ )/K (ξ0)] . (10)

The vertical dashed lines in Fig. 10 indicate the transition locations for the experiments of Ali et al.15 The N-factor at
the observed transition location based on the norm for total disturbance energy and kinetic energy are NE = 2.54 and
NK = 2.45 at Re/l = 16×106 /m and NE = 2.61 and NK = 2.48 at Re/l = 18×106 /m, respectively.

The optimal transient-growth results in Figs. 8–10 have been presented at the optimal parameters of spanwise wave-
length and optimization interval. Figure 11a depicts the optimal spanwise wavelength for Gout

E in terms of boundary-
layer thickness along the initial optimization locations and for four different Reynolds numbers. In addition, the
optimal parameters for the TAMU capsule are also plotted at the unit Reynolds numbers from Ref. 12. For both
capsule geometries, the optimal disturbance wavelength displays a good scalability with the boundary-layer thick-
ness. The optimal wavelength with respect to the boundary-layer thickness varies in the range of (λ/δ )opt ≈ [1.6,2.7]
for the HLB capsule and (λ/δ )opt ≈ [2.2,3.0] for the TAMU capsule (in the region without domain boundary ef-
fects) and is not too different from the findings of Reshotko & Tumin11 with (λ/δ )opt ≈ [3,3.5] for the flat plate
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tion onset locations based on the experiments of Ali et al.15

and (λ/δ )opt ≈ 3.2 for stagnation point flows. Although the predicted optimal wavelengths are similar for both
configurations, the small difference may have been caused by the different wall temperatures used in the two studies
(T̄w,HLB = 295K, T̄w,TAMU = 391K) and the resulting ratios of wall temperature to boundary-layer edge temperature
((T̄w/T̄e)HLB < 1 and (T̄w/T̄e)TAMU ≈ 1). The impact of the T̄w/T̄e-ratio on the optimal parameters for non-modal
disturbance growth will be addressed in the next subsection. Figure 11b shows the length of the optimal transient-
growth interval as a function of the initial location for the HLB and TAMU capsules at the respective unit Reynolds
numbers. Even though the dimension of the TAMU capsule is only about one half the size of the HLB capsule, the
optimal length of the transient-growth interval is nearly the same for both geometries ((ξ1− ξ0)opt ≈ 1.0cm) and
decreases slightly with the unit Reynolds number. The relatively short optimal optimization length is consistent with
the findings of Theiss et al.17, 18 for the laminar wake flow development behind an isolated roughness element on
the forebody of the HLB capsule. The authors have shown that due to the strongly favorable pressure gradient,44 the
laminar wake flow experiences growth and decay of the streak amplitude (and also modal disturbance growth) only
within a few roughness diameters downstream of the element. Although not shown here, choosing Gout

E as objective
function, the boundary layer on both capsule forebodies undergoes optimal non-modal disturbance growth within 30–
40 boundary-layer thicknesses depending on the angular coordinate, which is about fifteen times shorter in comparison
to the findings of Reshotko & Tumin11 for flat plate flows.
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Figure 11. Impact of unit Reynolds number on optimal optimization parameters for (a) spanwise disturbance wavelength and (b) opti-
mization interval length; ◦: HLB capsule with T̄w = 295K, �: TAMU capsule with T̄w = 391K.
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B. Effect of wall temperature

The effect of the wall temperature on the optimal disturbance growth based on the total and kinetic energy norm
is shown in Fig. 12 for both, the HLB and TAMU capsules. In accordance with previous findings in the litera-
ture,9, 11, 20, 27, 45–47 the disturbance energy gain increases with wall-cooling, whereas the effect is more pronounced
in the case of the total energy norm, especially in the vicinity of the stagnation point. The disturbance energy gain
based on total and kinetic energy norms is higher for the HLB capsule due to the larger body-length Reynolds number
by a factor of about five. The share of the kinetic energy on the total energy of the disturbance increases with T̄w/T̄e
and for T̄w/T̄e ≈ 1 (HLB capsule: T̄ w = 395K, TAMU capsule: T̄ w = 391K; see also Fig. 4) the total energy mainly
consists of kinetic energy, i.e. at φ0 = 35.5 ◦: Gout

E = 70.6, Gout
K = 69.7 for the HLB capsule and Gout

E = 10.3, Gout
K = 9.9

for the TAMU capsule, respectively.
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Figure 12. Streamwise evolution of the maximum optimal disturbance energy gain based on outlet energy at various wall temperatures for
(a,b) TAMU capsule, Re/l = 4.4×106 /m and (c,d) HLB capsule, Re/l = 10×106 /m. The disturbance energy norm is based on (a,c) total
energy and (b,d) kinetic energy.

The effect of wall temperature on the optimal spanwise wavelength and the optimal optimization interval for both
capsules is shown in Figs. 13a and 13b, respectively. The optimal azimuthal wavelength scaled by the boundary-layer
thicknesses decreases slightly with wall cooling for both capsule configurations. The results for the TAMU capsule
fall within the range of the HLB capsule data when (T̄w/T̄e)TAMU < 1. On the other hand, the optimal optimization
length increases slightly with wall-cooling ((ξ1−ξ0)opt ≈ 1.1cm) along with a higher deviation from the mean value.

C. Revision of transient-growth based transition correlation

Recently, Paredes et al.12 revisited the distributed roughness-induced transition correlation of Reshotko & Tumin,11

which is the only physics-based model that tackles the blunt-body paradox. The RT-correlation is defined as

Reθ

(
k
θ

)(
T̄e

T̄w

)1.27

= 434, (11)
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Figure 13. Impact of wall temperature on optimal optimization parameters for (a) spanwise disturbance wavelength and (b) optimization
interval length; ◦: HLB capsule with Re/l = 10×106 /m, �: TAMU capsule with Re/l = 4.4×106 /m.

where θ denotes the momentum thickness, Reθ is the Reynolds number based on θ , and k is the roughness height.
Reshotko & Tumin11 assumed that an energy norm at the transition location is related to the roughness-induced energy
through the transient-growth energy gain factor G with Etr = GEin. Further assumptions are that the input energy
scales with Ein = ρ̄kū2

k where the roughness-induced disturbance velocities are proportional to the roughness height,
ūk/ūe ∝ k/θ and the wall-cooling ratio T̄e/T̄w is equivalent to ρ̄k/ρ̄e. As a result, the input energy can be approximated
to Ein = (T̄e/T̄w)(k/θ)2. Furthermore, the gain is assumed to scale with the length Reynolds number (as shown in
Fig.9) or with the square of a thickness Reynolds number. Thus, the energy at the transition location results in

(Etr)
1/2 =

(
G1/2

Reθ

)
Reθ

(
k
θ

)(
T̄e

T̄w

)0.5

. (12)

Assuming a power-law variation of the scaled optimum transient energy gain with respect to the surface-to-edge
temperature ratio, (

G1/2

Reθ

)
∝

(
T̄w

T̄e

)cT

, (13)

Reshotko & Tumin9, 11 in the vicinity of T̄w/T̄e≈ 0.5 obtained a value for the power-law exponent of cT =−0.77 which
finally yields Eq. 11. For their analysis they used optimal transient-growth computations based on local, parallel theory
and self-similar boundary-layer flow without curvature effects. Furthermore, the initial optimization position and the
spanwise wavenumber also remained unchanged. Paredes et al.12 applied an advanced framework to improve the
shortcomings of the optimal transient-growth computations by Reshotko & Tumin;9, 11 namely, non-local transient
growth computations including curvature effects for full Navier-Stokes basic state solutions of the TAMU capsule
at varying wall temperatures (T̄w/T̄e)TAMU < 1. The initial (ξin = ξ0) and final locations (ξtr = ξ1), as well as the
spanwise wavenumber were also optimized. Based on the improved framework, Paredes et al.12 revised the original
RT-correlation and also assumed a power-law variation for the optimum transient energy gain with respect to the
surface-to-edge temperature ratio (

G1/2

Reθ0

)(
ρ̄e,0ū2

e,0

ρ̄e,trū2
e,tr

)1/2

∝

(
T̄w

T̄e,0

)cT

. (14)

In their analysis, they computed the cT -value for several possible transition onset locations, φtr, based on the optimal
parameter combinations (λopt , mζ ,opt , (φtr−φ0)opt ) for each of the different wall temperatures involved (T̄w/T̄e < 1)
and for maximizing the total energy gain (J = Gout

E ). Moreover, three assumed variations in spanwise disturbance
wavelength were also considered. As a result, the set of exponents were nearly insensitive to the assumed λ -variation
and all cT -values were averaged, resulting in a mean value of cT ≈−0.81, which is remarkably close to the value com-
puted by Reshotko & Tumin9, 11 based on parallel flow transient-growth calculations. For that reason, the following
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revised RT-correlation of Paredes et al.12 only slightly deviates from the originally proposed correlation (Eq. 11)

Reθ

(
k
θ

)(
T̄e

T̄w

)1.31

= 455. (15)

The purpose of this section is not to provide an additional transient-growth-based transition correlation, but rather
to check if the presented non-modal growth data for the HLB capsule will result in a similar power-law exponent, cT ,
as derived based on the TAMU capsule data. The results shown in Fig. 12a are used to estimate the best-fit exponent
through the relation given in Eq. 14. Note, that only results were considered when T̄w/T̄e < 1, in particular, T̄w = 170K,
245K and 295K. Figure 14 depicts the variation of the cT -value at selected transition onset locations. In addition, the
results for the TAMU capsule with the spanwise disturbance wavelength variation based on axisymmetric flow (the
same assumption as used in this work) are also shown. The angular coordinate for the HLB capsule data is shifted
by ∆φ ≈ 1.3 ◦ to match the boundary-layer edge Mach number conditions on the TAMU capsule (see Fig. 4). The
averaged power-law exponent for the HLB capsule data is cT,HLB = −0.813 and therefore in a very good agreement
with the equivalent TAMU capsule value of cT,TAMU =−0.809.
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Figure 14. Best-fit power-law exponent of wall-to-edge temperature ratio for ◦: HLB capsule with Re/l = 10×106 /m and �: TAMU
capsule with Re/l = 4.4×106 /m.

V. DNS results for roughness patches

To investigate the effect of micron-sized roughness on the capsule boundary layer, direct numerical simulations
(DNS) of the supersonic flow around the HLB capsule and the corresponding hemisphere are performed considering
finite patches of distributed roughness. The roughness patch geometry for these simulations is deduced from capsule
experiments in the HLB16 and will be quantified subsequently. The generic roughness mimics the Nextel Velvet
Coating which allows for infrared surface temperature measurements and showed to have a distinct influence on
transition.8 The Reynolds number based on the height of the roughness is Rekk = O(1), which is well below the
critical value. Thus, immediate transition can be excluded.18, 48 The possible presence of modal as well as non-modal
growth mechanisms in the roughness wake is investigated in Sec. V.B. Three studies are presented and compared.

Case Geometry Ma [−] p∞ [Pa] T∞ [K] Tw [K] Re/l [1/m] AoA [◦]

1 HLB Capsule 5.9 478 59 295 6.25 ·106 24
2 Hemisphere 5.9 478 59 295 6.25 ·106 0
3 Hemisphere 5.9 1377 59 295 18.0 ·106 0

Table 1. Freestream conditions for the configurations with rough wall.

Freestream conditions for the different simulations are listed in Tab. 1. First, the steady flow at Re/l = 6.25×106/m
over two different roughness patches located on the HLB capsule is analyzed by RWTH. The computational domain
contains capsule, shock wave, and roughness patch. The flow disturbances in the vicinity of the two roughness patches
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are analyzed and compared. Second, a roughness patch located on the hemisphere from Sec. III.D is investigated by
TUM. The wake of the roughness is analyzed for modal instabilities at Re/l = 18×106/m and unsteady DNS imposing
pressure disturbances are performed to investigate the interaction of roughness and forced disturbance modes.

A. HLB capsule roughness simulations by RWTH

The roughness patches are located in the center of the spherical forebody of the generic Apollo-like “HLB capsule”
in Fig. 3. The origin of the spherical coordinate system is set in the center of the roughness patch, with ξ , ζ and η

being the streamwise, spanwise and wall-normal direction respectively. At the given location, the Mach number at
the edge of the boundary layer is Mae = 0.5. For the current Reynolds number Re/l = 6.25×106/m, the boundary-
layer thickness is δ = 492 µm and the displacement thickness is δ ∗ = 89.2 µm. The Reynolds number based on the
displacement thickness is Reδ ∗ = 109.65. The roughness patch elements protrude 20 µm into the boundary layer which
is 4% of the boundary-layer thickness and 22% of the displacement thickness. The corresponding roughness Reynolds
number is Rekk = 5.82. These values are summarized in Tab. 2.

δ [µm] δ ∗ [µm] θ [µm] k [µm] k/δ k/δ ∗ Reδ ∗ Rekk Rek

492 89.2 74.3 20 0.0406 0.224 109.65 5.82 6.02

Table 2. Properties of the unperturbed boundary layer and roughness: δ wall normal distance where the flow has 99% of the total enthalpy
of the freestream, i.e. the boundary-layer thickness, δ ∗ displacement thickness, θ momentum thickness, k roughness protrusion height,
Reynolds number Reδ∗ = ρ(δ )u(δ )δ ∗/µ(δ ) based on the displacement thickness, roughness Reynolds number Rekk = ρ(k)u(k)k/µ(k) using
flow properties at roughness height k, roughness Reynolds number Rek = ρ(k)u(k)k/µw using density and velocity at roughness height and
viscosity at wall temperature.

The geometry of the aforementioned finite roughness patches is illustrated in Fig. 15, where the flow direction
at the boundary-layer edge is from left to right. Each of the patches consists of a certain number of identical single
roughness elements having a square base of 100 µm×100 µm. Two patterns of elements are considered. In Fig. 15a the
“aligned” or “checkerboard” configuration with 5×5 elements is depicted. Based on the flow direction, neighboring
elements in spanwise direction form rows, whereas columns are found in streamwise direction. This configuration
possesses infinite channels between the columns of elements. The spacing between the elements in both streamwise
and spanwise direction is L = 200 µm. The “staggered” configuration is shown in Fig. 15b. The second and fourth

ξ

ζ

L

L

(a)

ξ

ζ

L

L

L/2

(b)

Figure 15. Roughness setup: a) schematic of the “aligned” distributed roughness having 25 elements; b) schematic of the “staggered”
distributed roughness having 23 elements. The elements have a square base of 100µm×100 µm and a height of 20 µm. The spacing of the
elements in both streamwise and spanwise direction is L = 200 µm. The misalignment of the staggered configuration is L/2. The flow at
the boundary-layer edge is from left to right.

row of elements are reduced by one element and misaligned in the spanwise direction by L/2. The projected area in
the streamwise direction is gapless. The base area of both patches is 0.9mm×0.9mm.

To resolve the micron-sized roughness patch, the unstructured Cartesian grid is massively refined in the vicinity
of the roughness patch. The regions of constant grid resolution around the patch are evidenced in Fig. 16. Note that
instead of the single elements of the roughness patch, the hull of the complete patch is depicted. Furthermore, the

17 of 25

American Institute of Aeronautics and Astronautics



capsule surface is sketched flat. The gray dashed line in Fig. 16a indicates the surface of the spherical forebody. The
Cartesian cell length in the innermost region with the highest resolution is ∆d = 1.945 µm and it is doubled from
region to region. An example of the change in resolution (scaled by a factor of 2) is given at the outermost frame. The
streamwise and normal variation of the grid is shown in Fig. 16a, whereas the variation in the ζ -direction is sketched
in Fig. 16b. In total, the mesh contains 300× 106 cells and 30× 106 cells are clustered in the refined vicinity of the
roughness patch.

ξ

η

(a)

ζ

η

(b)

Figure 16. Grid topology in the vicinity of the roughness patch: a) ξ −η plane at ζ = 0, flow at the boundary-layer edge from left to right;
b) ζ −η plane at ξ = 0. The thick line represents the hull of the roughness patch and the capsule surface. The thin lines indicate a change
of grid resolution of the Cartesian mesh, e.g., see upper left corner of (a), where the mesh size scaled by a factor of 2 is indicated.

The streamwise velocity deficit with respect to the smooth configuration u′ downstream of the second and third
row of the elements is shown in Fig. 17. In each figure, the staggered and the aligned configuration are shown in the
left and right half plane, respectively. Differences between the configurations are restricted to the region close to the
wall, i.e. for η < 0.1mm. Downstream of the staggered second row in Fig. 17a, the highest velocity deficit occurs
downstream of the elements slightly above the top of the element at η ≈ 30 µm. Note that it is more intense in the
aligned configuration. In the channel between the elements, higher velocities, i.e., a lower velocity deficit, are evident
in the aligned configuration. This statement also holds downstream of the identically aligned third row in Fig. 17b.
Inside the patch, the difference in the streamwise velocity between the flow-channel and the post-element location is
higher for the aligned configuration.

The spanwise velocity component normal to the symmetry plane is evidenced in Fig. 18 downstream of the rough-
ness patch. Again, the staggered and aligned roughness are compared. The velocity component of the aligned config-
uration in the positive half-plane is multiplied by−1 to yield a better comparison. The overall pattern for both cases is
identical, but the inward flow, i.e., the bright peaks in Fig. 18, is stronger for the staggered configuration. This can be
attributed to the inward flow generated by the sum of the elements acting as a finite patch. This discussion is resumed
in the subsequent analysis in Sec. V.B on the infinite extent of the rows of roughness located on the hemisphere.

B. Hemisphere roughness simulations by TUM

The TUM-DNS were carried out on a restricted 3D domain extracted on the hemisphere geometry for
ŝ ∈ [74,116] mm. Details of the restricted domain and the roughness patch are shown in Fig. 5. The roughness
patch of the hemisphere consists of 5 squared elements in streamwise direction. The size of each element and the
streamwise spacing are described in Sec. V.A. The patch is centered at ŝ = 77.4 mm. Dirichlet boundary conditions
are applied at the inflow, Riemann invariants are used at the outflow and azimuthal-periodic boundary conditions are
used in spanwise direction. By using periodic boundary conditions, the domain can be limited in spanwise direction
to one single roughness periodicity (L). As a result, a considerable reduction of the domain size and, consequently,
of computational cost is achieved. The grid of the restricted domain consists of about 29× 106 points (1320 points
in streamwise and 220 in wall-normal direction clustered at the roughness location and 100 points equally spaced in
spanwise direction).
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(a)

(b)

Figure 17. Streamwise velocity deficit with respect to the smooth configuration u′: a) downstream of the second row of elements at
ξ =−L/2 =−100 µm; b) downstream of the third row of elements at ξ = L/2 = 100 µm. The negative half plane shows data of the
“staggered” configuration and the positive half plane of the “aligned” configuration.

Figure 18. Velocity in spanwise direction downstream of the last row of elements at ξ = 2.5L = 500 µm. The negative half plane shows
data of the “staggered” configuration, the positive half plane of the “aligned” configuration. For the sake of comparability, the spanwise
velocity component of the aligned configuration is multiplied by −1. The thick line indicates v = 0.
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1. Steady simulations

For the case of Re/l = 6.25×106 /m, we compare the results with the ones presented in Sec. V.A for the HLB capsule
configuration. We found that the presence of the roughness on the hemisphere has a similar effect on the flow as in
the case of the HLB capsule. In particular, since several roughness elements are present in spanwise direction in the
case of the HLB capsule, the flow in the vicinity of the symmetry plane presents the same periodicity features as in
the case of the rough hemispherical geometry. The profiles of the streamwise velocity at three different positions are
shown in Fig. 19. A good match can be observed at all three positions. Moreover, Fig. 20 shows a contour map for
the spanwise component of the velocity in the ζ −η plane at the position ξ = 2.5L = 0.5 mm downstream of the last
roughness row. Also in this case, the values for the hemisphere match well the ones for the capsule.

Results for the base flow at Re/l = 18×106 /m are also shown in Fig. 19. Compared to the case with lower unit
Reynolds number, a less stable boundary layer is expected and a higher roughness height to boundary-layer thickness
ratio is found, in particular, k/δ = 0.069 and Rekk = 25.

Further numerical studies on the hemispherical geometry (not shown here) have been undertaken to investigate the
influence of the patch length in streamwise direction. In fact, compared to the experiments in the HLB, the roughness
in the present analysis has a smaller spatial extension. However, we found that further lengthening of the rough region
in streamwise direction, obtained by adding roughness elements upstream of the patch, has a negligible influence on
the flow downstream of the patch. Therefore, no significant influence is expected on the stability properties of the
wake developing downstream of the last roughness element.

Figure 19. Comparison of the streamwise velocity profiles of the boundary layer for the hemisphere and the HLB capsule geometry with
AoA = 24◦. Profiles are extracted at spanwise coordinate ζ = 0mm. The roughness patch is centered on ξ = 0mm, whereas ξ =−0.5mm
and ξ = 0.5mm refer to positions at 0.5 mm before and after the roughness patch, respectively.

2. Unsteady simulations

For the case of Re/l = 18×106 /m, the base flow downstream of the roughness patch has been analyzed with the help
of spatial two-dimensional linear stability analysis (LST-2D). The code used to perform LST-2D has already been
validated and tested in the case of wake flow instability behind isolated roughness elements.17, 18 No modal instability
could be found in the boundary layer downstream of the roughness patch.

To investigate the presence of possible non-modal instability mechanisms (i.e. transient growth), time-varying
pressure disturbances are introduced at the inflow of the restricted domain (side 2 in Fig. 5) and the development
of unsteady disturbances is analyzed by means of unsteady DNS. The disturbance is defined as a superposition of 5
spatial modes with random amplitude An and phase φn,

p′(ζ ,η) = c(η) ·
5

∑
n=1

Ancos
(2πn

λζ

ζ +φn

)
, (16)

where λζ equals the spanwise length of the domain at the inflow position. The function c(η) = e−(η/δ )3
, with δ be-

ing the boundary-layer thickness, guarantees that the perturbation vanishes outside the boundary layer. Experimental
investigations at HLB have revealed that relevant frequencies over the rough-wall capsule for large Reynolds num-
bers lie in the range 100 - 300 kHz.16 Based on this observation, three different frequencies are investigated in the
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Figure 20. Contour map for the spanwise velocity at the position ξ = 2.5L = 0.5 mm. Contour lines are used for the capsule results and
color shading for the hemisphere results. Contour level spacing is 0.3 m/s. For clarity, the dashed line shows the projection of the roughness
elements.

present analysis: f1 = 167 kHz, f2 = 250 kHz and f3 = 333 kHz. The resulting inflow condition for the pressure at
ξ =−3.4mm is given by:

p(ξ0,ζ ,η , t) = p̄(ξ0,ζ ,η)+ p′(ζ ,η)
3

∑
m=1

cos(2π fmt), (17)

where ξ0 is the streamwise coordinate value of the inflow boundary and p̄(ξ0,ζ ,η) the pressure distribution of the
steady base flow.

Simulations over a long enough time interval corresponding to multiple periods of the forcing field are needed for
the transient effects to vanish and we verified the convergence of the spectrum across the entire simulation domain.
The spatio-temporal analysis is conducted by performing a two-dimensional fast Fourier transform (FFT). Any flow
variable g(ξ ,ζ ,η , t) is thus decomposed into spanwise wavenumber-frequency spectra, Gm,n(ξ ,η):

g(ξ ,ζ ,η , t) =
M−1

∑
m=0

N−1

∑
n=0

Gm,n(ξ ,η)ei2π(nζ/N+mt/M), (18)

where M and N are the number of time and space samples, respectively. The amplitude Am,n(ξ ) of the modes (m,n) is
defined as the maximum value of |Gm,n(ξ ,η)| at the position ξ .

Fig. 21 shows the amplitude of the perturbed modes with regard to the streamwise component of the velocity
as well as the evolution of higher modes for the frequency f1. Qualitatively similar results are found for the other
frequencies and they are not shown here.

As predicted by LST-2D analysis, no amplified modes are found for the analyzed frequencies. In addition, no
evidence of possible transient growth could be found for the considered disturbances. Even though a rapid disturbance
growth at the roughness location is evident for the modes (·,4) and (·,8), their contribution to the total disturbance
energy is small.

The absolute value of the time Fourier transform of the streamwise velocity |Ûm(ξ ,ζ ,η)| at different streamwise
positions is shown in Fig. 22 for f1 = 167 kHz. For clarity, the roughness height and the boundary-layer edge are
marked in the figure. At the inflow, the maximum value of the disturbance is found at a height of about η = 0.07 mm,
corresponding to about 0.14δ . Further downstream, viscous effects are responsible for a strong damping of the dis-
turbance in the region close to the wall and the disturbance maximum moves to about η = 0.2 mm. As the roughness
does not produce a significant perturbation at this height, no significant interaction can be observed with the incoming
unsteady disturbance.
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Figure 21. Evolution of the amplitude of different spatio-temporal Fourier modes along the streamwise coordinate for the streamwise
component of the velocity. Values are normalized with the edge velocity at the inflow. The origin of the streamwise coordinate, ξ = 0mm,
is set on the center of the roughness patch.

Figure 22. Time Fourier transform of the streamwise velocity at the inflow (ξ =−3.4mm) and at the roughness position (ξ = 0mm) for
f1 = 167kHz. The absolute values are normalized on a scale of 0 to 1 and values below 0.2 are blanked out. The black isolines indicates the
streamwise-velocity distribution and the red line the projection of the roughness element.
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VI. Summary and Conclusions

Optimal transient-growth results for the capsule experiment in the hypersonic Ludwieg tube at the Technische
Universität Braunschweig (HLB) at Mach 5.9 were presented and compared with predictions by Paredes et al.12 for a
similar experiment at Mach 6 in the Adjustable Contour Expansion (ACE) facility at Texas A&M University (TAMU).
The angle of attack in the two setups was different, but due to the spherical-segment forebody of both capsule models,
the normalized boundary-layer edge data are still very much comparable. In each of the two sets of data, the unit
Reynolds number varied by a factor of about two only. Both sets together cover a Reynolds number range based on
capsule diameter which extends over more than one order of magnitude, however. The maximum gain in energy is
higher for the HLB capsule owing to the higher Reynolds numbers but still remains rather moderate in comparison
with the amplification factors that correlate the onset of transition in other flows with modal instabilities. Similar
trends were observed for the two setups, e.g. concerning the spanwise wavelength normalized by the boundary-layer
thickness of the optimal disturbances and the relatively short optimal optimization interval length. In particular, the
surface-temperature dependence of the optimal transient-energy gain is very much comparable. Therefore, the value of
the power-law exponent of the wall to boundary-layer edge temperature ratio of the correlation for roughness-induced
transition that was originally proposed by Reshotko & Tumin11 and the slightly different value recently derived by
Paredes at al.12 based on optimal transient-growth data for the TAMU capsule are further substantiated by the HLB
capsule data at higher Reynolds numbers.

In some of the HLB experiments, a patch of well-defined micron-sized surface roughness had been applied to the
capsule model. The effect of this roughness patch on the boundary-layer flow field was replicated by direct numerical
simulations (DNS). A hemisphere geometry has been introduced to reduce the size of the simulation domain and, thus,
the computational costs of some of these DNS. We compared the flow on the capsule at angle of attack with the one on
the hemisphere for both the smooth and the rough-wall geometry and showed that the flow over the hemisphere well
reproduces the flow over the capsule. In particular, a good match of velocity and temperature profiles is observed.

The stationary disturbance flow field introduced by the well-defined roughness patch was simulated and its insta-
bility characteristics were analyzed. In the case of Re/l = 18×106 /m where transitional surface heating in the HLB
experiment was observed, 2D linear eigenvalue analysis (LST-2D) based on partial differential equations did not reveal
any modal instability. Unsteady DNS have been undertaken to investigate possible non-modal instability mechanisms.
Unsteady pressure disturbances are introduced in the domain at three different frequencies ( f1 = 167, 200, and 333
kHz) and a spatio-temporal Fourier analysis has been performed on the entire domain. Neither modal amplification
nor transient growth of disturbances could be found. In particular, the height of the roughness has been shown to be
too small for the roughness wake to amplify the incoming unsteady disturbances.

In summary, we considered several potential mechanisms to explain laminar-turbulent transition on the spherical
forebody of blunt re-entry capsules. At the conditions of the wind-tunnel experiments, modal disturbances are strongly
damped in the boundary layer of the nominally smooth configuration, as shown in Ref. 8. The complementary studies
on the upper limit of non-modal disturbance growth using optimal transient-growth theory revealed that the maximum
transient gain in energy for stationary disturbances is rather moderate. The maximum transient growth in total energy
is found in a relatively short distance downstream of the stagnation point. Roughness-induced transient growth of
stationary disturbances is unlikely to serve as the primary cause for the observed onset of transition for the rather
low surface-roughness values of the HLB experiment. The direct numerical simulations supplemented by the LST-2D
studies on the effects of the roughness patch showed that the modifications of the steady flow field due to the patch
are too weak to trigger modal disturbance growth in its wake. Present DNS did not reveal any noteworthy non-modal
disturbance growth in the wake flow. Therefore, a plausible explanation for the observed transition onset in experiment
for low surface-roughness values under conditions investigated in the HLB experiment remains to be found and further
studies on the interaction of freestream disturbances with small surface roughness are required.
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